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ABSTRACT

An efficient synthesis of R,β-unsaturated alkylimines at low temperature using azides has been developed. Carbocations generated from allyl
alcohols helped achieve a rapid conversion under mild conditions with azides to afford reactive R,β-unsaturated imines. Hydroxy or alkoxy
groups are essential for these transformations, and utilizing readily accessible allyl alcohols gave awide extension of substrates. The efficiency of
this novel method is demonstrated in the total synthesis of an iminium ant venom alkaloid.

R,β-Unsaturated imines (1-aza-1,3-butadienes, enimines)
provide more useful synthetic efficiency than saturated
imines, for example, as Michael acceptors, hetero-Diels�
Alder diene units, and dienophiles.1,2 Despite their useful-
ness and their simple structures, the preparation of R,β-
unsaturated imines, especially alkyl and cyclic enimines, is
problematic due to the tendency toward polymerizations

and hydrolysis by strong reactivity. Simple condensation
of R,β-unsaturated carbonyls and amines is often carried
out, but mostly to produce s-trans-fixed R,β-unsaturated
alkylimines.1e,f Thus, some elimination strategies have been
developed, but their heating conditions should be avoided
for the reactivity of products (Scheme 1a).
Furthermore, azides can also deliver saturated imines.4

The Schmidt reaction with alcohols or olefins and azides
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gives corresponding saturated imines via aminodiazonium
intermediates (Scheme 1b).5 However, this requires strong
acids and the substrates are limited to benzyl alcohols and
styrenes to generate carbocations.5d,e Although simple
olefins can also produce saturated imines with azide by
way of [3 þ 2] cyclization, high temperatures (>100 �C)
and long reaction times (from several hours to days) are
required.6 Moreover, direct transformation to “unsatu-
rated” imines through these procedures is quite limited.7,8

Thus, a more efficient method is required.

Our research plan is shown in Scheme 1c. To achieve a
rapidone-step transformation tounsaturated imines under
mild conditions, we envisioned that allyl cations that are
easily accessible from allyl alcohols in the presence of
weak�moderate acids could help our desired reactions to
produce R,β-unsaturated imines. Despite the reported
reactions of azides with oxyallylic and benzylic cations
that produce [3 þ 2] and [3 þ 3] reaction products,5f�h

unsaturated imine synthesis from allyl cations with azides
has not been reported. Focusing on these advantages of the
allylic carbocation, herein we report a fast, efficient in-
tramolecular transformation from azide-bearing allylic
alcohols to R,β-unsaturated imines under mild conditions
and its application to the total synthesis of an ant venom
alkaloid.
Since the desired unsaturated alkylimines were antici-

pated to be unstable due to hydrolysis or their ability as a
diene for the hetero Diels�Alder reaction, we commenced
our study with the cyclic substrate 1awhich could afford a
rigid bicyclic unsaturated imine 1b, similar to the molecule
in the report from Pearson’s group.6e

Optimizations of acids and temperature conditions with
allyl alcohol1awereattempted indichloromethane (Table1).
Although trifluoroacetic acid (pKa = 12.65 in CH3CN)9

produced a trace amount of 1b under reflux (entry 1),
p-toluenesulfonic acid (pKa = 8.45 in CH3CN) completed
the reaction in 30min to afford desired 1b in excellent yield
(entry 2). It is noteworthy that the synthesis of this
unsaturated imine was accomplished with a moderate acid
at around40 �Cwithin 1h, despite previous reports indicating

Scheme 1. Preparation of Imines and Our Plan

Table 1. Screening of Reaction Conditions

entry acida
T

(�C) time

yield

(%)b

1 TFA reflux 60 min trace

2 TsOH 3H2O reflux 30 min 96

3c TFA rt 20 min 69

4 TsOH 3H2O rt 2 days 27

5 MsOH 0 40 min 58

6 TMSOTf 0 10 min 86

7 none reflux 60 min n.r.

a 1.2 equiv of acid were used except for entry 3. b Isolation yield. c 22
equiv were used. TFA = trifuluoroacetic acid, TsOH = p-toluenesul-
fonic acid, MsOH = methanesulfonic acid, n.r. = no reaction.
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higher temperatures, much longer reaction times, and
strong acid conditions (TfOH in most case, pKa = 2.4 in
CH3CN).5 Thus, utilizing allylic alcohols as a carbocation
source is highly advantageous.
To improve the reaction conditions, the reaction tem-

perature was cooled down to room temperature, but an
excess amount of acid was necessary for full conversion of
1a in 1 h (entry 3).10 Because TsOHwas not well soluble at
room temperature (entry 4), a liquid methanesulfonic acid
(pKa = 9.97 in CH3CN) was used and could provide 1b in
58% yield in a 40 min reaction at 0 �C (entry 5). Finally,
trimethylsilyl trifluoromethanesulfonate (TMSOTf) was
found to be the best to carry out the reaction at 0 �C in
good yield (entry 6). With TMSOTf, the reaction was
accomplished in only 10 min.11 An additive-free reaction
(entry 7), other aprotic/protic solvents, or basic conditions
(not shown) did not afford the desired products. Addition-
ally, the introduction of leaving groups such asTs,Ms, and
Tf or halogens on 1a for an SN2

0 type Schmidt reaction
under basic conditions destroyed the startingmaterial, and
our desired R,β-unsaturated imines were not observed.5i,12

With optimal conditions determined, our focus was
directed toward the substrate study and the reaction
mechanism of this transformation (Table 2). Acyclic com-
pound 2aawas delivered to 2b in good yield (entry 1). Not
only a protecting-group-free hydroxy group but also OH-
protected 2ab�ae could afford 2b in good yield (entries
2�5). From both (E)-olefin 3aa, 3ab and (Z)-olefin 4,
trans-conjugated imine 3b was obtained in a similar yield
regardless of the protection (entries 6�8). Interestingly, the
importance of the position of the hydroxy group was
revealed by substrate 5, which could give the same product
3b from 3aa but in amuch lower yield than those of entries
6�8 and without reproducibility (entry 9). Probably, an
association of the SN2 reaction might have an effect in this
case.5i Compared to entry 6 in Table 1, 6, an epimer of 1a,
could also give 1b in a similar yield (entry 10). In contrast, 7a,

Table 2. Scope of the Reaction

aExcept for entries 14 and 16. b Isolation yield. cLack of reproduci-
bility. dReaction conditions: TFA (5 equiv), CH2Cl2, �50 �C, 10 min
(entry 14); TsOH 3H2O, CH2Cl2, reflux, 20min (entry 16). e E/Z=3/20.
n.r. = no reaction.

Scheme 2

(10) Reaction with 1.2 equiv of TFA gave recovered starting
material.

(11) BF3 3OEt2 also worked enough, but in a slightly lower yield (74%).
(12) Only in mesylation, a trace amount of unsaturated imine was

observed by using an excess of reagents (triethylamine, MsCl). But it
seemed to be generated by an acidic ammonium mesylate salt.
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a deoxy compound of 1a, did not give any products, but
rather the recovered 7a (entry 11).13 The reaction with
primary alcohol 8a or 9a did not afford unsaturated imine
8b or 9b (entries 12�13, 8a: recovered, 9a: decomposed).
With tertiary alcohol 10a (entry 14), conversion to 10bwas
achieved with the weaker acid TFA at the lower tempera-
ture �50 �C. With trisubstituted olefins, not only alcohol
11a but also epoxide 12a could be transformed to 11b and
12b in moderate yields (entries 15�16). Due to the in-
stability of 12a�b (entry 16), TsOH gave a better result
than that with TMSOTf (28% at 0 �C).
Wealso investigated intermolecular reactions (Scheme2),14

and cinnamaldehyde 13b, a hydrolysis product of the re-
sulting aldimine, was generated from 13a in 39% yield. No
ketone or ketimine was observed.5h,15

To exclude reaction pathways,5h,i,6f we submitted three
possible intermediate compounds 14�16,16 but none of the
three were converted to 1b. Considering these facts along
with the results of Table 2 (no [3 þ 3] or [3 þ 2] products
were observed),5h our reaction suggests a carbocation-
mediated SN2

0-type Schmidt reaction (Scheme 1b).17

With this establishedmethod, we demonstrated a total syn-
thesisofaconjugatedpyrrolinealkaloid fromthevenomof the
Costa Rican antMegalomyrmex foreli.18 TheMOM-masked
cyclization precursor 17 prepared from valeraldehyde19 was
treatedwithTMSOTfat 0 �Cfor 10min, and thedesired acid-
labile cyclic unsaturated iminium alkaloid 18was synthesized
without a deprotection step (Scheme 3).20

In conclusion, we have demonstrated an efficient intra-
molecular transformation from substrates possessing azides
and allylic secondary/tertiary alcohols to R,β-unsaturated
alkylimines.Most reactionswereperformedwithTMSOTfat
0 �C and were accomplished in 10 min. Allyl alcohols
and allyl epoxides of cyclic and acyclic compounds were
acceptable, and the use of readily accessible functional
groups gave us a wide extension of acceptable substrates
and improved reaction conditions to perform rapid trans-
formation and afford R,β-unsaturated imines at low tem-
peratures. The efficiency of this synthetic strategy was
demonstrated by the total synthesis of an ant venom
alkaloid. Further investigation of reaction mechanisms
and applications toward concise alkaloid synthesis is
currently underway.
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Scheme 3. Synthesis of Ant Venom Alkaloid
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